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Abstract

Axisymmetric convection of a binary liquid confined in a vertical cylin-
der (of radius R and height h = 2R) heated from below is numerically
investigated. Two sets of boundary conditions are considered, relevant
to different physical configurations. We first give the ranges (in Rayleigh
number Ra) of the oscillatory and steady convective states for a given
mixture and show that a change in its characteristics (an increase of the
Prandlt number Pr value from 1 to 10) can significantly alter the overall
behaviour of the system, namely the concealement of the time dependent
state. We then compare, for both sets of boundary conditions and high
Ra values, binary and pure fluid convective flows and exhibit to what
extent their behaviours differ.

1 Geometrical configuration and system param-

eters

The equations ruling binary liquid convection, once rendered nondimensional
and under the Oberbek-Boussinesq hypothesis, include four parameters. Among

them is the Rayleigh number: Ra = α∆Tgh3

κν
, where h is the height of the cylin-

der, g the gravitationnal acceleration, α the thermal expansion coefficient, κ and
ν the thermal and momentum diffusivities and ∆T the imposed temperature
difference between bottom and top plates. The three other parameters entirely
depend on the nature of the considered liquid mixture: the Prandlt Pr = ν

κ
and

Lewis Le = κs

κ
(where κs is the mass diffusivity) numbers and the separation

ratio Ψ = β

α
kT

T0

(T0, β, and kT standing for the mean temperature, mass expan-
sion and thermodiffusion coefficients). In the present contribution, the values
of these last two numbers are set to Le = 0.1 and Ψ = −0.2.
The following boundary conditions are considered:
- Imposed temperature on horizontal plates and thermally insulated side wall,
- No mass flux through any boundary,
- No-slip kinematic condition on top and bottom boundaries.
As for the kinematic condition on the side boundary, we shall investigate both
cases of either a no-slip or slip-free. the first (NS) refers to a liquid enclosed in
a cylindrical box whereas the last (SF) is a first approximation of a (straight
and surface tension free) liquid bridge [1].
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2 Binary Liquid convective states at low Ra

2.1 Pr = 1 Case

Computations have been run, for both configurations with Pr = 1. The result-
ing domains over which different convective states are obtained are summarized
in Figures 1 and 2.
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Figure 1: Observed convective states. The given amplitudes are those of the ra-
dial velocity at a given node (null amplitude hence depicts the conductive state).

Albeit for different threshold values, the global behaviour is the same in both
NS and SF configurations: once the value of Ra exedes a critical value, the con-
ductive state undergoes a (subcritical) Hopf bifurcation that leads to oscillatory
convection. The way these time-dependent states then evolve happens to be
different wether the NS or SF case is considered but are not in the scope of the
present contribution and will therefore not be further detailed. In both config-
urations, once the thermal driving becomes too strong, oscillatory behaviours
abruptly end and the resulting flow is a steady convective one. Since those
three states are not directly connected, there are common ranges in Ra over
which they exist which yield the possibility of as many hysteretical behaviours
(indicated by arrows in Figures 1 and 2).

2.2 Pr = 10 Case

If Pr is now set to 10, a major change in the global behaviour of the system
is observed (again occuring for both NS and SF cases): The Hopf bifurcations
(RaNS

H ∼ 15600 and RaSF
H ∼ 8550) of the conductive states do not lead to

oscillatory convection but to steady one instead. Once the stationnary flow
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Figure 2: As in Figure 1. The fact that branches cross is merely due to the
choice of the monitored amplitude.

is obtained, with decreasing Ra one follows the steady states branch until the
thresholds (RaNS

sta ∼ 14100 and RaSF
sta ∼ 7850 that lead back to the conduc-

tive regime are reached; time-dependent states are nowhere to be found! –Ref
(Pr=10,Le=0.01,psi=-0.25) [2] Transition SOC-TW directe–

These last states do however exist and were reached by using a different strat-
egy: a Pr = 1 oscillatory flows was used as an initial condition and both Ra and
Pr values were gradually changed. Having reached the oscillatory branches and
explored the domains (RaNS ∈ [14425, 14875] and RaSF ∈ [8175, 8400]) over
which they dwell explains why the could not be observed before: these branches
lie at Ra values lower than RaH and greater than Rasta, in regions where both
steady convective and conductive states are strongly stable.

3 Comparison with pure fluid steady convection

For both sets of boundary conditions, computations relative to pure (Pr =
1, Ψ = 0) fluid were run. In pure fluids, the conductive state undergoes a
supercritical pitchfork bifurcation to steady convection and we shall here only
compare binary and pure fluid steady states.



3.1 SF configuration

Figure 3 shows, for the SF configuration, the global kinetic energy of the ob-
tained flows.

Ec =

∫ ∫

Ω

∫
v.vdΣ

It is clear that at high Ra, the fact that the liquid be binary or not has little
influence on its convective behaviour, as already mentioned in [3], [4] and [5].
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Figure 3: Global kinetic energy of pure fluid and binary liquid steady states.

3.2 NS Configuration

The NS configuration is found to be much more complex than the SF one;
Indeed, as summarized in Figure, there are multiple possible convective states
for most Ra values.

In the NS configuration (figure 4), there are two possible kinds of flow, con-
sisting of either one or two (stacked) convective cells. We will not detail this
last regime here but rather focus on the unicellular state that is born at low Ra

values and has a structure similar to the one obtained in the SF configuration.
For that flow (figure 4), the global kinetic energy curves relative to pure and
binary liquids do collapse for Ra ∈ [20000, 75000] but then part; Moreover, the
pure fluid steady state vanishes at Ra ∼ 85000 whereas the binary liquid state
loses its stability at Ra ∼ 105000. It is also worth mentionning that beyond that
threshold, in the pure fluid case, the flow becomes oscillatory and quite simi-
lar (in structure and frequency) to the one found for the binary liquid at low Ra.
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Figure 4: Global kinetic energy of the steady states; Upper and lower branches
respectively correspond to one and two (stacked) cells flows

All these differences clearly imply that binary and pure liquid steady convec-
tion can indeed be almost identical, provided the considered states are far from
their bifurcations, and that whatever the value of Ra may be, the bifurcations
types and values of the flows remain strongly tied to the (binary or not) nature
of the considered liquid.

References

[1] M. Wanshura, H.C. Kuhlmann and H.J. Rath, ”Three-dimensional insta-
bility of axisymmetric buoyant convection in cylinders heated from below”,
J. Fluid Mech. (1996), vol. 326, pp. 399-415
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